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The inviscid instability of heterogeneous swirling flows with radius-dependent 
density is investigated and secular relations for the instability growth rates for 
several different flow configurations are obtained from explicit solutions of the 
governing equations. It is found, in agreement with a sufficiency condition for the 
stability of such flows obtained earlier, that they are stable to both axisymmetric 
and non-axisymmetric infinitesimal modes whenever the density is a monotonic 
increasing function of radius and at the same time the radial variations in both 
the angular and axial velocity components remain small. The instability mechan- 
isms present in these flows are both of centrifugal and of shear origin, the classical 
Rayleigh-Synge criterion being a condition for centrifugal stability. It is shown, 
via several counter examples, that the Rayleigh-Synge criterion for the stability 
of swirling flows is generally neither a necessary nor a sufficient condition when 
non-axisymmetric disturbances are considered or large shears exist in the flow. 
Very stable flows occur when the angular and axial velocity components have no 
radial variation and simultaneously the density increases with radius as is the case 
in a typical centrifuge. 

1. Introduction 
It is our purpose in this paper to examine the inviscid instability of heterogene- 

ous swirling flows for infinitesimal disturbances of arbitrary asymmetry. An 
understanding of the hydrodynamic stability characteristics of such flows is of 
considerable practical interest not only for flows occurring in counterflow centri- 
fuges but also for certain vortex stabilization schemes such as that proposed for 
the containment of fusion products from laser-imploded deuterium pellets. Al- 
though much is known concerning the stability of constant density swirling 
flows (Chandraskhar 1961; Howard & Gupta 1962; Michalke & Timme 1967), 
relatively little attention has been given to the stability of flows with radius- 
dependent density subjected to non-axisymmetric disturbances. The existing 
stability investigations of such heterogeneous swirling flows have concerned 
themselves mainly with the special profiles associated with rotating jets 
(Ponstein 1959; Alterman 1961) or with Rankine vortices with subregions of 
constant density and axialvelocity (Uberoi, Chow & Narain 1972). Such flows are 
generally found to be unstable via a Kelvin-Helmholtz instability mechanism 
because of discontinuities in their steady-state velocity components. It was not 
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until relatively recently that a general sufficiency criterion for the stability of 
heterogeneous swirling flows with continuous but arbitrary radial variation in 
the velocity components and density was obtained (Kurzweg 1969). The stability 
criterion found reduces to the familiar Rayleigh-Synge criterion for the special 
case of axisymmetric modes and no axial velocity gradients but at the same 
time suggests that flows may be unstable to non-axisymmetric disturbances 
even when the product of the density and the square of the circulation is a mono- 
tonic increasing function of radius. The existence of such non-axisymmetric 
modes for certain swirling flows is supported by the experimental observations 
of Weske & Rankin (1963) and of Johnston (1972) and also by some recent 
analytical results of Fung & Kurzweg (1973). 

We wish here to present some exact solutions of the equations governing the 
stability of heterogeneous swirling flows both with continuous and with dis- 
continuous radial density variation. Our objectives are to  obtain an estimate of 
the accuracy of the sufficiency condition for these flows and to show that generally 
there are both centrifugal and shear instability mechanisms present in these 
flows. Large radial gradients in the axial and angular velocity components will 
be found to be destabiIizing while large positive radial density gradients tend to 
stabilize the flow. In contrast to the results obtained by Howard & Gupta (1962) 
for constant density swirling flows, it will be shown, both from a re-examination 
of the su%ciency condition and from calculated values of the oscillation-amplifi- 
cation factor for specific flows, that such flows can be guaranteed to be stable 
for all infinitesimal modes of instability if the density is a monotonic increasing 
function of radius but the gradients in the angular and axial velocity com- 
ponents remain small. Such stable conditions are found, for example, in centri- 
fuges provided that the counterflow current remains small. 

2. Governing equations and interfacial conditions 
We consider a heterogeneous swirling flow confined within an annular region 

R, G r 6 R, between two concentric cylinders. The flow has a radius-dependent 
steady-state velocity field [0, rQo(r), W,(r)] and densityp,(r). These velocity com- 
ponents and density may be either a solution of the Navier-Stokes equation or 
simply chosen as convenient profiles satisfying continuity requirements. We 
shall confine ourselves here, for purposes of mathematical simplicity, to small 
amplitude disturbances and neglect both viscous and gravitational effects on 
the instability growth rates. Furthermore, the flow is assumed to be incom- 
pressible as would be the case for a radially stratified liquid. 

Following the usual normal-mode analysis, we assume that the flow is disturbed 
by infinitesimal, three-dimensional, time-dependent perturbations whose non- 
radial dependence has the exponentiaI form exp i(kz + m6' - cd), where k is the 
axial mavenumber, rn is the integer azimuthal wavenumber and o is the complex 
oscillation-amplification factor. Substituting the sums of the steady-state 
solutions and perturbations into the governing Euler equation, continuity equa- 
tion and incompressibility condition, one finds, within the framework of the 
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above approximations, that the linear stability behaviour of the flow is governed 

- (11 

by 
Dp +po[iNu- 2!2,v] -pra; = 0, p +porm-l [Nw - iD*(rn,) u] = 0, 

p++,,k-'[Nw-i(DW,)~] = 0, D*u+ik(sv+w) = 0, iNp+(Dp,)u = O,j 

where D = d/dr ,  N = k W ,  + rnQo - w ,  D* = d/dr + r-1 and s = m/rk is the 
disturbance asymmetry parameter, which is zero for axisymmetric modes and 
infinite for azimuthally symmetric disturbances. Here u, w and w are the per- 
turbations in the radial, azimuthal and axial velocity, p is the pressure perturba- 
tion and p the perturbation in density. We shall be concerned only with temporal 
instabilities, for which the wavenumbers will be real while w = w,+iwi will 
usually be complex. Flow instability occurs whenever w4 is positive, or more 
accurately, since the equations are invariant under complex conjugation, when- 
ever wi is different from zero. The stability boundary is defined as the curve sepa- 
rating regions of neutral stability (wi = 0) from regions of instability (w > 0). 

Combining equations (1) by eliminating the variables v, w andp leads to the two 
first-order equations 

(k2+m2/r2)p = ip,{[k(DW,) +mD*(rQ,)/r] u-N(D*u)) 

NDp + ( 2msZ0/r) p = ipo( @ - NZ) u, 

(2) 

(3) and 

where D, = d/dr - r-1 and @ = (por3)-l D[po(r2Qo)2] is the familiar Rayleigh- 
Synge parameter, which, when positive everywhere in a heterogeneous flow 
without axial velocity gradients, guarantees stability against axisymmetric 
modes. After some manipulation these equations can in turn be reduced to t.he 
single second-order equation 

N2[D(poED*) -+ok2] u + [NF + GI u = 0, (4) 

where E = (1 +s2)-1, F = -kD*{poEIDWo+~D*(rQo)}, 

G = pok2E[@ - ~SQO(DW,) +~~rQ;D(log~o)]. 

This equation has been given previously by Kurzweg (1969) and represents the 
governing eigenvalue problem for the inviscid instability of heterogeneous 
swirling flows with radius-dependent velocity and density when used in con- 
junction with the boundary conditions u(R,) = u(R2) = 0. 

Equation (4) is reminiscent of the Taylor-Goldstein equation, arising in sta- 
bility investigations of stratified shearing flows in the presence of a gravitational 
field, and like this equation is not soluble analytically except for some very 
special profiles. A numerical solution, such as that given by Hazel (1972) for the 
Taylor-Goldstein equation, is always possible, however we confine ourselves here 
to those velocity and density profiles which allow exact solutions in terms of 
modified Bessel functions. To be able to do this, it is necessary either to avoid the 
second-order singularity in the equation as wi vanishes by having N constant or 
to require F and G t o  vanish simultaneously. The former is possible when both 
Qo and TK are constant, the latter for constant density flows when the angular 
velocity component has the form of a Rankine vortex and the axial velocity does 
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not vary with radius. The density distribution in all our calculations here will be 
assumed to have a power-law dependence on radius. Clearly, within the frame- 
work of these restrictions, we can approximate more complicated profiles only 
by the standard technique of dividing the flow into subregions inside which 
the above conditions on the velocity and density hold and then matching the 
solutions at the interfaces between the subregions using an appropriate set of 
kinematic and dynamic interfacial conditions. The conditions to be met at each 
interface are simply that the displacement and total pressure be continuous 
there. The mathematical forms of these interfacial conditions are readily 
obtained by integrating (2) and (3) across an interface and letting the integration 
interval approach zero. This yields, respectively, 

( U / W  = 0, (P) - 'L'(~/N)R C(PO9-Q%)1 = 0, (5) 

where ( 9 )  = g(R + e) - g(R - E) represents the difference between conditions 
on the two sides of the interface at  r = R as given by exact solutions of (4) 
in the adjoining subintervals. When allowance is made for surface-tension 
effects, the term in the square brackets in the above pressure condition should 
contain the extra term - (T/R2) [1 -m2 - (kR)2], where T is the surface-tension 
coefficient. This can be demonstrated by integrating the stability equation after 
the appropriate surface-tension term has been added. It should be pointed 
out that Michalke & Timme (1967) used an incorrect interfacial pressure 
condition in their study of Rankine-vortex instability which does not contain 
the centrifugal term porQ& This implies, as also noted by Uberoi et al. (1972), 
that their calculations for constant density rotating flow with a jump in angular 
velocity at  the interface have to  be corrected. 

3. Suflticiency condition for stability 
Before obtaining some exact solutions of (4), we briefly rederive (see Kurzweg 

1969) and then discuss some of the properties of the general sufficiency condition 
for the stability of the heterogeneous flows under consideration. Such a condition 
follows directly from (4) by setting u = Nt$,  multiplying the result by the 
complex conjugate 3, and then integrating over the flow region and using the 
boundary conditions that $ vanishes at  r = R, and r = R,. Doing this, one 
finds the integral expression 

j; { - po"ElD"11'1 a + k21 $121 + (1-F + BD*(POEDfl)I 
+ N - 1 [ G - ~ p o E ( D N ) 2 ] )  I$lz]rdr = 0, (6) 

whose imaginary part is 

If t,he term in the second pair of square brackets in (7) remains positive definite 
throughout the interval [R,, R,] then the flow must necessarily remain stable 
(i.e. oi = 0). We thus find that a sufficient condition for stability is 
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Density gradient, p = rDpo/po 

FIGURE 1. Sufficiency condition (9) for the stability of heterogeneous swirling flow for 
various values of s = rnlkr in the absence of an axial velocity gradient. 

1 I 

0 5 10 

Density gradient, p = rDpo/p,, 

FIGUXE 2. Effect of axial velocity gradient on the stability of heterogeneous swirling flow 
for the potentially least stable mode at s = (4+ h)/y.  Sufficiency oondition: y2+ ha < 4p. 



248 Y .  T. Fwng and U .  H .  Kurzweg 

for all r in [R,, R,]. This criterion may also be rewritten in the convenient non- 
dimensional form 

(1 +s2) 0 
[DWo+s(rDQ,,+4Qo)]2 ' " r =  (9) 

which is reminiscent of the Richardson number criterion encountered in the 
stability of stratified shearing flows. It should be noted that violations of in- 
equalities (8) and (9) do not necessarily imply instability. On the other hand, as 
will be supported by the exact solutions given below, the true stability boundary 
is usually not far removed from that found by setting the left-hand side of 
inequality (8) to zero. Indeed, for certain flows and mode asymmetry the above 
sufficiency condition is found to be exact. 

Several observations concerning flow stability follow at once from sufficiency 
condition (9). We note that the flow is stable for all s = m/rk when the Rayleigh- 
Synge parameter CD is positive everywhere throughout the flow and at the same 
time the radiaI gradients in the angular and axial velocity components remain 
small. Also, it  is observed that swirling flows with constant density, such as those 
investigated by Howard & Gupta (1962), always violate condition (8) for large 
enough s, preventing one from obtaining a general sufficiency condition in that 
limit. Mathematically, this violation stems from the fact that the term G in 
(4) vanishes for constant density swirling flows subject to azimuthally symmetric 
disturbances. In view of this i t  is also not possible to obtain a sufficiency condition 
for non-rotating flows as there G will vanish for arbitrary s and hence the second- 
order singularity in the equation for neutral stability does not appear. In figures 1 
and 2 we have plotted the stability effects of the non-dimensional density gradient 
,u = rDpo/po as a function of the non-dimensional axial velocity gradient y = OWo/ 
Q, and angular velocity gradient h = rDQo/Q0 as predicted by inequality (8). It 
maybe seen that the sufficiency condition reduces to the Rayleigh-Synge criterion 
for axisymmetric modes provided that y vanishes. However, flow stability for 
non-axisymmetric modes with a large symmetry parameters = m/rk can gener- 
ally be guaranteed only for positive density stratification with small enough 
gradients in the axial and angular velocity components. The parabolic boundaries 
shown in figure 2 correspond to the potentially least stable modes at  s = (4 + h) /y ,  
for which I?, given by (9), has a minimum. Note that the most likely mode of 
instability for solid-body rotation ( A  = 0) in the absence of an axial velocity 
gradient (y  = 0) is predicted to be azimuthally symmetric (s = 00). An increase 
in either y or h reduces the extent of the stable flowregion. 

An indication of the stability mechanisms responsible for flow instability is 
given directly by inequality (9). It shows, in analogy with the Richardson number 
criterion for stratified shearing flows, that the heterogeneous swirling flows 
considered here are subject both to centrifugal instabilities, occurring when the 
Rayleigh-Synge parameter is negative somewhere in the flow, and to shear 
instabilities, which can occur even when 0 is positive. The latter instability is 
similar to that found in stably stratified shearing flows in a gravitational field. 
The existence of shear-induced instabilities under conditions where the RayIeigh- 
Synge criterion is satisfied has recently been supported by some exact solutions 
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for a particular type of swirling flow with radius dependent density (Fung & 
Kurzweg 1973). The proof by Chandrasekhar (1961, p. 277) that the sign of 
is the sole determinant for swirling-flow instability would appear to be incorrect 
in view of criterion (9) and the counter examples to be presented below. It would 
be equally incorrect to assume that a stratified shearing flow in a gravitational 
field will always be stable when the density decreases monotonically upwards. 

4. Some exact solutions of the stability equation 
To obtain both a measure of the validity of our sufficiency condition and some 

information on the instability growth rates as functions of p, h and y for specific 
unstable flows, we next obtain explicit solutions of (4) for several velocity and 
density profiles. To keep within the restrictions discussed earlier, we consider only 
those flows for which exact solutions in terms of hyperbolic Bessel functions are 
possible. That is, we restrict ourselves to flows with a step-function or Rankine- 
vortex distribution for the angular velocity component and a power-law dis- 
tribution for the density. One of the simplest such flows to analyse is the swirling 
flow 

where a,, W,, p1 and CT are constants. For this flow we find that the radial velocity 
perturbation is given by 

(10) Qdr) = Q,, K(r) = K, po(r) = P I P ,  

with the corresponding pressure perturbation given by 

p ,  = - i Q f p , ( ~ / R ) ~  (nf - 4 - (T) {r-i'[Ak- "IV(pkr) + Bk"Kv(qkr)]]. (12) 

Here, Iv(z) and K,(x) are modified Bessel functions of the first and second kind of 
order v, a prime denotes the total derivative with respect to the argument shown 
and 

q = (1 - ( 4  + a)/n;)$, n, = k(W,/Q,) + m - w/Q, = N1/Q 
v = (m2q2 + (2m/n, + $a)2)+. 

The constants A and B can be eliminated by applying boundary conditions 
u(R,) = u(R2) = 0,  and this leads to the secular relation 

for the complex oscillation-amplification factor w = w, + io,. Here K, = kRl and 
K~ = kR2. This determinant is relatively easy to evaluate for axisymmetric 
disturbances (s = 0) and for nearly azimuthally symmetric modes (s 9 1). 
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We do this by using, respectively, the asymptotic and small-argument expansions 
for the Bessel functions and find 

)” - -  m w ,  4-+( 
Q, Q, - 1 + [an/(Kz - K 1 ) ] 2  

for 1 < kR, and 

o w ,  
Ql Ql 

m{g k [a(g + h)]4) 
h 

- = k-+m+ 

for 1 9 ICR,. Here h = m2 + (+a), + [m/log (R2/R1)]2, Q = 0 ,1 ,2 ,3 ,  . . . . 
Equations (14) and (15) clearly show that, for this swirling flow with constant 

velocity components, axisymmetric modes of instability will occur only when 
g < - 4  while azimuthally symmetric modes are expected when g < 0. This 
result is in exact agreement with the sufficiency condition (8) and the stability 
behaviour shown in figure 1 along the line h = 0. Furthermore, it shows that 
for this flow non-axisymmetric modes are less stable than their axisymmetric 
counterparts. The instability growth rates do not depend on the axial velocity 
component since y = 0 in this instance. However, instabilities in the form of 
azimuthally symmetric modes do occur when 0 > 0. Recent experimental 
measurements by Johnston (1972) on the stability of heterogeneous flows with 
nearly solid-body rotation and a negative radial density gradient confirm this 
point. 

As a second specific flow we examine the stability of the two-region hetero- 
geneous distribution 

} (16) 
st, = a,, W, = W,, po = p,(r/R)@ for R, < r < R, 
Qo = Q,(R/r)2, W, = W,, po = p, for R < r < R,, 

where a,, Q,, W,, W,, p,, p, and r~ are constants. This flow represents a rotating 
jet core with radius-dependent density surrounded by a potential vortex (Ran- 
kine) of constant density and uniform angular velocity. By letting g, W2 and 22, 
vanish and R, become infinite, this flow becomes identical to that considered by 
Uberoi et al. (1972) in their study of wing-tip vortex instability. Generally, this 
flow will be unstable for some modes via the Kelvin-Helmholtz mechanism 
because of discontinuities in the velocity components a t  the interface at  r = R. 
The sufficiency condition (8) will always be violated for some s at such discon- 
tinuities since either h or y becomes infinite there. The stability equation (4) is 
relatively easy to solve for this two-region flow and the appropriate secular 
relation can be obtained. We have carried out such a calculation and find, 
after neglecting surface-tension effects and applying the interfacial conditions 
(5 ) ,  that the flow stability is governed by 

(1’121 - 4 - 4 r u a 4  - HlKV(P)l 
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1 I I 
0 1 2 1 I 

P = Q,/fh 
FIGURE 3. Stability boundaries (mi = 0) for an unbounded two-region flow for several 

values of m. - - - - , Rayleigh-Synge criterion for axisymmetric disturbances. 

where 

H'z = G ( K Z ) / G ( K Z ) Y  

01 = PZ/Pl, p 2  = Q,/Q,, n2 = (X:K +ma, - 4/Q,, 
with nl, q, K ~ ,  K~ and v defined as above. 

Evaluation of (17) for arbitrary rn and X: is generally not possible without the 
aid of electronic computation. However, several limiting cases can be discussed 
analytically using the asymptotic and small-argument expansions of the Bessel 
functions I&) and K,(z) and their derivatives. Consider first the case of axisym- 
metric modes (m = 0)  for uniform axial velocity (W, = W2). Here the secular 
relation becomes 

(w-X:W,)2 = 4 ( a P 2 -  l ) / (q. f l+~f i ) ,  (18) 

where fl and fz are lengthy functions of q l K l  and q Z K Z  whose explicit forms are 
given by Fung (1 974). Following essentially the same argument as that used by 
Alterman (1961) in a related study, it is found that this flow will be stable (i.e. 
oi = 0)  whenever up2 >, 1. This result corresponds precisely to the Rayleigh- 
Synge criterion for such a discontinuous flow, as can readily be shown by integra- 
ting the function @ = D[p,(r2Q,)~]/p0r3 across the interface at  r = R. Unstable 
axisymmetric modes occur for ap2 < 1. 
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1 2 3 4 5 6 

FIGURE 4. Stability characteristics of a non-rotating jet surrounded by a vortex of different 
density. The special case of axisymmetric modes (m = 0) with kW,/R, = 1 and W,/W, = 5 
is shown. - - -, semicircle bound for unstable modes. Stability when 

[WWz- W l ) / ~ , l 2 +  K ~ ; ( K ) / K 3 ( K )  

4 ( K ) / I O ( 4  
a 2  

A second limiting form of the secular relation (17) follows upon setting Ic = 0 
and CT = 0. For such azimuthally symmetric modes the small-argument expan- 
sion of the modified Bessel functions yields the expression 

n,(nlj, - 2 )  +ap2n$j2 = m(@2 - I), (19) 

where j i  = ( - l)$ (R:m t- RZm)/(Rqm - R2") and ni, a and ,!i' are as defined earlier. 
A neutral-stability boundary occurs when the discriminant of this quadratic in 
w vanishes. We have evaluated these stability boundaries for the case of an 
unbounded flow with R, = 0 and R, = co for several different integer values of m. 
The results are illustrated in figure 3 together with a dashed curve representing 
the Rayleigh-Synge criterion for axisymmetric modes. Note that the m $: 0 
modes are in most instances less stable than their axisymmetric counterpart. 
This is especially so for large m and, indeed, as m approaches infinity only the 
special case p = 1,  a 2 1 remains stable. Similar behaviour was found by Fung 
& Kurzweg (1973) for a related flow. The fact that this flow is unstable for large 
m except for p = 1 is also supported by the violation of condition (9) occurring 
for large DQ,,. 

The final limiting form of relation (17) to be considered is that for a non- 
rotating jet ( Ql = 0) with radius-dependent density surrounded by a potential 
vortex of different but constant density. If in addition the cylinder walls are 
moved to zero and infinity but the constant axial velocity component in the 
outer region remains different from that of the jet, (1  7) assumes the very simple 
form 
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0 - 1  

V 

! 

FIGURE 5. Growth rates for azimuthally periodic perturbations in an unbounded 
three-region swirling flow with constant angular velocity. 

For constant density this relation reduces to that which Michalke & Timme 
(1967) would have obtained if the correct interfacial pressure condition had been 
used. The values of o given by this expression are generally complex, implying 
flow instability. Furthermore, the solutions for axisymmetric modes (m = 0 )  are 
always found to lie on a semicircle in the complex w plane. We show this behaviour 
in figure 4 for the special case cr = 0, kWl/Q, = 1 and W,/Wl = 5 for several dif- 
ferent axial wavenumbers k. Note that the instability growth rate for fixed k first 
increases with increasing a, reaches a maximum a t  an intermediate value and 
then decreases with still larger a. For intermediate values of K = kR it  is possible 
to guarantee flow stability when a exceeds the value given in the figure. Another 
interesting phenomenon seen in figure 4 is that all unstable solutions lie within a 
semicircle of diameter equal to the range of the axial velocity (Leibovich 1969). 
This shows very clearly that axisymmetric instabilities can occur even when the 
Rayleigh-Synge condition (up2 1) is satisfied, provided that axial velocity 
gradients are taken into consideration. This serves as a counter example to the 
findings of Chandrasekhar (1961, p. 359). 

The last flow whose stability characteristics we wish to examine in some detail 
is an unbounded three-region flow with arbitrary axial velocity, constant angular 
velocity and radius-dependent density. We shall examine the stability of this 
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flow only for azimuthally symmetric disturbances as these are expected to be 
among the least stable of the modes for heterogeneous flows in solid-body rota- 
tion. Also, when considering modes with k = 0, the possible destabilizing effects 
of the steady-state axial velocity components disappear. Specifically, we are 
concerned with the stability of the steady-state distribution 

I 
I 

Q, = constant, W, = Wo(r), 
O < r < R ,  

po = pl(r/R)" for R Q r < R(1+6),  r"' pl(l+S)" for R(1+6) < T < co, 

where pl, IT and 6 are constants. This density distribution represents a continuous 
variation from a constant value p1 for r < R to a different constant valuep,( 1 + 6)" 
for T 2 R( 1 + 6). The governing differential equation for this specific flow is again 
easy to solve in each of the subregions and leads, after application of the inter- 
facial conditions ( 5 )  and the boundary conditions that u ( r )  vanishes at  r = 0 and 
r = 00, to the secular relation 

(2m2 + ITA - 2mv) - (2m2 + ITA + 2mv) (1 + 8)2y = 0, (22 )  

where A = 2(1- w/rnQ,)-l- (1 - w/mQo)-2 and v, which has been defined pre- 
viously, becomes v = (m2 + ITA + ($u)~)*.  This equation has the obvious solution 
v = 0. From it, together with the fact that wi will be different from zero only 
when A > 1, it is seen that the flow is stable when IT > 0 and unstable when IT < 0. 
That is, the flow is stable if the density is an increasing function of radius but 
unstable when the density is decreasing. This result is consistent with our general 
sufficiency condition for flow stability (8). In  figure 5 we have plotted the effect 
of increasingly negative u on the instability growth rate for several different 
azimuthal wavenumbers and arbitrary 6. Note the monotonic increase in wi for 
large m as IT becomes more negative and the disappearance of the instability as 
u approaches zero. Equation (22) yields no complex w for positive CT, as expected. 
For negative IT all solutions lie on a semicircle in the complex w/m plane. The 
diameter of the semicircle equals Q,. This result also holds for arbitrary density 
distributions, as shown by Fung (1974). 

5. Discussion and conclusions 
We have found that heterogeneous swirling flows with radius-dependent 

density are stable to both axisymmetric and non-axisymmetric infinitesimal 
disturbances whenever the density is an increasing function of radius and at the 
same time the radial variations of the angular and the axial velocity components 
remain small. Some exact solutions of the governing stability equations for 
several different flows confirm this point and support the conclusions drawn from 
the sufficiency condition obtained earlier. The instability mechanisms present 
in these swirling flows are two. The first is centrifugal. This form of instability can 
be suppressed when the product of the density and the square of the circulat,ion 
is an increasing function of radius (the Rayleigh-Synge criterion). The other is a 
shear instability mechanism, which becomes important for large radial gradients 
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in the velocity components. Indeed, no degree of stable density stratification can 
stabilize a flow with a discontinuous velocity profile when surface tension is 
neglected (Kelvin-Helmholtz instability). It is concluded that the sufficiency 
condition (9) is a reasonably good indicator of flow stability and that for certain 
flows and instability modes it predicts the exact location of the stability boundary. 
The Rayleigh-Synge criterion, a condition for centrifugal stability, is shown by 
the above calculations to be neither a necessary nor a sufficient condition for 
flow stability when large shear conditions exist in the flow or non-axisymrnetric 
modes of instability are considered, This fact was first noted for constant density 
swirling flows by Howard & Gupta (1962). Our results furthermore show that, if 
one wishes to  keep the Aow hydrodynamically stable and hence avoid radial 
mixing of fluid, it is best to require the angular velocity component to remain 
constant throughout the flow and the fluid to increase in density with increasing 
radius and to minimize the gradients in the axial velocity. These are precisely the 
conditions met in centrifuges whose bounding cylinders rotate at  the same con- 
stant angular velocity but would not be met, for example, by the flow created by 
tangential injection of fluid into the annular region between stationary cylinders. 
In  the latter case, boundary layers would be formed at  the cylinder walls, leading 
to strong flow instability and subsequent turbulence. The recently commercially 
introduced density-gradient centrifuges are quite stable to all hydrodynamic 
modes of instability. In these devices a large positive radial density stratification 
(p = rDpo/po > 0 )  is established in a rotating flow of constant angular velocity 
( A  = rDao/ao = 0). 
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